gridripper::multipole::Y Class Reference

Class for spherical harmonic functions. More...

#include <Bases.h>

Inheritance diagram for gridripper::multipole::Y:

gridripper::multipole::Coeff< GComplex_t >

List of all members.

Public Member Functions

 Y (const Y &)
 Y (const int L, const int M)
 Initialize with the angular momentum quantum numbers.
GComplex_t eval (const GReal_t theta, const GReal_t phi) const
 Evaluate it as a function at given coordinates.

Public Attributes

const int l
 Index pairs (angular momentum magnitude and direction quantum numbers).
const int m


Detailed Description

Class for spherical harmonic functions.

Spherical harmonic convention ($\vartheta\in[0,\pi]$, $\varphi\in[0,2\pi[$): $Y_{l}^{m}(\vartheta,\varphi):= \sqrt{\frac{2l+1}{4\pi}} \sqrt{\frac{(l-m)!}{(l+m)!}} P_{l}^{m}(\cos(\vartheta)) \mathrm{e}^{\mathrm{i}m\varphi}$ ($l\in\mathbf{N}_{0}$, $m\in\{-l,\dots,l\}$), where $P_{l}^{m}:= \frac{(-1)^{(|m|+m)/2}}{2^{l}l!} \frac{(l+(m-|m|)/2)!}{(l-(m-|m|)/2)!} (1-\mathrm{id}^2)^{|m|/2} ((\mathrm{id}^2-1)^{l})^{(l+|m|)}$, $\mathrm{id}$ being the identity function of $[-1,1]$. We shall denote the identity function of the first projection by $\vartheta$, and of the second projection by $\varphi$.

Note: Maple uses the Condon-Shortley phase i.e. $Y_{l}^{m}=(-\mathrm{i})^{m}{Y_{{}_{\mathrm{Maple}}}}_{l}^{m}$.

Version:
0.5, 01/31/2007
Since:
GridRipper 0.5
Author:
Andras Laszlo

Constructor & Destructor Documentation

gridripper::multipole::Y::Y ( const int  L,
const int  M 
)

Initialize with the angular momentum quantum numbers.


Member Function Documentation

GComplex_t gridripper::multipole::Y::eval ( const GReal_t  theta,
const GReal_t  phi 
) const

Evaluate it as a function at given coordinates.

Reimplemented in gridripper::multipole::Coeff< GComplex_t >.


The documentation for this class was generated from the following file:

Generated on Wed Jun 17 18:46:57 2009 for GridRipper by  doxygen 1.5.6